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How to scale graph systems?
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ABSTRACT
In this paper, we study the problem of choosing among par-
titioning strategies in distributed graph processing systems.
To this end, we evaluate and characterize both the perfor-
mance and resource usage of di↵erent partitioning strate-
gies under various popular distributed graph processing sys-
tems, applications, input graphs, and execution environ-
ments. Through our experiments, we found that no single
partitioning strategy is the best fit for all situations, and
that the choice of partitioning strategy has a significant ef-
fect on resource usage and application run-time. Our exper-
iments demonstrate that the choice of partitioning strategy
depends on (1) the degree distribution of input graph, (2)
the type and duration of the application, and (3) the cluster
size. Based on our results, we present rules of thumb to help
users pick the best partitioning strategy for their particular
use cases. We present results from each system, as well as
from all partitioning strategies implemented in one common
system (PowerLyra).

1. INTRODUCTION
There is a vast amount of information around us that

can be represented in the form of graphs. These include
graphs of social networks, bipartite graphs between buyers
and items, graphs of road networks, dependency graphs for
software, etc. Moreover, the size of these graphs has rapidly
risen and can now reach up to hundreds of billions of nodes
and trillions of edges [5]. Systems such as PowerGraph [8],
Pregel [22], GraphX [9], Giraph [1], and GraphChi [16] are
some of the plethora of graph processing systems being used
to process these large graphs today. These frameworks allow
users to write vertex-programs which define the computation
to be performed on the input graph. Common applications

†This work was supported in part by the following grants:
NSF CNS 1319527, NSF CNS 1409416, AFOSR/AFRL
FA8750-11-2-0084, and a generous gift from Microsoft.
⇤Work performed while a student at UIUC.
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Table 1: Systems and their Partitioning Strategies.

System Partitioning Strategies

PowerGraph (§5) Random, Grid, Oblivious, HDRF, PDS
PowerLyra (§6) Random, Grid, Oblivious, Hybrid, Hybrid-Ginger, PDS
GraphX (§7) Random, Canonical Random, 1D, 2D

including PageRank or Single Source Shortest Path can be
easily expressed as these vertex-programs.
To be able to compute on large graphs, these systems

are typically run in a distributed manner. However, to dis-
tribute graph computation over multiple machines in a clus-
ter, the input graph first needs to be partitioned before com-
putation starts by assigning graph elements (either edges or
vertices) to individual machines.
The partitions created have a significant impact on the

performance and resource usage in the computation stage.
To avoid excess communication between di↵erent partitions
during computation, systems typically use vertex mirroring,
whereby some vertices may have images in multiple parti-
tions. If a partitioning strategy results in a large number
of mirrors, then it will lead to higher communication costs,
memory usage, and synchronization costs. These synchro-
nization overheads and communication costs, in turn, lead
to higher job completion times. Besides reducing the num-
ber of mirrors, the partitioning strategy needs to make sure
that the partitions are balanced in order to avoid overload-
ing individual servers and creating stragglers.
Graph partitioning itself must also be fast and e�cient;

for some graph applications, the time it takes to load and
partition the graph can be much larger than the time it takes
to do the actual computation. In particular, the authors of
[12] found that when they ran PageRank for 30 iterations
with PowerGraph on 10 servers, around 80% of the time
was spent in the ingress and partitioning stage. Our own
experiments reveal similar observations.
The characteristics of the graph also play an important

role in the determining the e�ciency of a partitioning tech-
nique. For example, many real world graphs, such as social
networks or web graphs [7], follow a power-law distribution.
Gonzalez et. al. demonstrate in [8] that the presence of
very high-degree vertices in power-law graphs present unique
challenges from a partitioning perspective, and motivate the
use of vertex-cuts in such cases. A large amount of research
has been done to improve graph partitioning for distributed
graph processing systems, e.g., [4, 8, 24]. Current research is
typically aimed at reducing the number of mirrors and thus
improving graph processing performance while still keeping
the graph ingress phase fast.
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1Peking University, China;
2 Hong Kong University of Science and Technology, China;

3 University of Waterloo, Canada;
4 Key Laboratory of Computational Linguistics (PKU), Ministry of Education, China

{ zoulei,mojinghui,zdy}@icst.pku.edu.cn, leichen@cse.ust.hk, tamer.ozsu@uwaterloo.ca

ABSTRACT
Due to the increasing use of RDF data, efficient processing of SPA-
RQL queries over RDF datasets has become an important issue.
However, existing solutions suffer from two limitations: 1) they
cannot answer SPARQL queries with wildcards in a scalable man-
ner; and 2) they cannot handle frequent updates in RDF repositories
efficiently. Thus, most of them have to reprocess the dataset from
scratch. In this paper, we propose a graph-based approach to store
and query RDF data. Rather than mapping RDF triples into a re-
lational database as most existing methods do, we store RDF data
as a large graph. A SPARQL query is then converted into a cor-
responding subgraph matching query. In order to speed up query
processing, we develop a novel index, together with some effec-
tive pruning rules and efficient search algorithms. Our method can
answer exact SPARQL queries and queries with wildcards in a uni-
form manner. We also propose an effective maintenance algorithm
to handle online updates over RDF repositories. Extensive experi-
ments confirm the efficiency and effectiveness of our solution.

1. INTRODUCTION
The RDF (Resource Description Framework) data model was

proposed for modeling Web objects as part of developing the se-
mantic web. It has been used in various applications. For ex-
ample, Yago and DBPedia extract facts from Wikipedia automat-
ically and store them in RDF format to support structural queries
over Wikipedia [19, 3]. Biologists also build RDF data collections,
such as Bio2RDF (bio2rdf.org) and Uniprot RDF (dev.isb-sib.ch/
projects/uniprot-rdf), for recording experimental data.

Generally speaking, RDF data can be represented as a collection
of triples denoted as SPO (sub ject, property, ob ject). A running

∗Lei Zou, Jinghui Mo and Dongyan Zhao were supported by
NSFC under Grant No.61003009 and RFDP under Grant No.
20100001120029. Lei Chen’s work was supported in part by RGC
NSFC JOINT Grant under Project No. N HKUST61 2/09, and
NSFC Grant No. 60736013 and 60803105. M. Tamer Özsu’s work
was supported in part by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.
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example is given in Figure 1(a). Note that, an RDF dataset can
also be modeled as a graph (called RDF graph), as shown in Figure
1(b). In order to query RDF repositories, SPARQL query language
[16] has been proposed by W3C. For example, we can retrieve the
names of individuals who were born on February 12, 1809 and died
on April 15, 1865 from the RDF dataset by the following SPARQL
query:
Q1: Select ?name Where { ?m <hasName> ?name. ?m <BornOn Date >
“1809-02-12”. ?m <DiedOnDate> “1865-04-15”. }

Although RDF data management has been studied in the past
decade, most existing solutions do not scale to large RDF reposi-
tories and cannot answer complex queries efficiently. Recent stud-
ies have focused on scalable techniques for large RDF repositories
(e.g. [2, 12, 13, 25, 22]). Although these existing RDF query en-
gines, such as RDF-3x [12], Hexastore [22] and SW-store [1], are
designed to address the scalability of SPARQL queries, they have
some common limitations: (1) they cannot support SPARQL with
wildcards in a scalable manner; and (2) it is very difficult for some
existing systems to handle frequent updates in RDF repositories,
forcing them to reprocess the dataset from scratch when there is an
update. x-RDF-3x [15], the advanced version of RDF-3x system,
can support updates, but, it still fails to support wildcard queries.

1.1 SPARQL Queries With Wildcards
In real applications, having full knowledge about a query object

may not be practical; thus, it may not be possible to specify exact
query criteria. For example, we may know that an important politi-
cian was born on February 12 and died on April 15, but we have no
idea about his exact birth and death years. In this case, we have to
perform a query with wildcards, as shown below:
Q2:Select ?name Where { ?m <hasName> ?name. ?m <BornOnDate> ?bd.
?m <DiedOnDate> ?dd. FILTER regex(str(?bd), “02-12”), regex(str(?dd),
“04-15”) }

Although there are techniques for supporting SPARQL queries
with wildcards and for managing large RDF datasets, to the best of
our knowledge, no technique exists to support both, i.e., the abil-
ity to execute SPARQL queries with wildcards in a scalable man-
ner. Existing RDF storage systems, such as Jena [23], Yars2 [11]
and Sesame 2.0 [5], cannot work well in large RDF datasets (such
as Yago dataset). SW-store[1], RDF-3x [12], x-RDF-3x [15] and
Hexastore [22] are designed to address scalability, however, they
can only support exact SPARQL queries, since they replace all lit-
erals (in RDF triples) by ids using a mapping dictionary.

1.2 Frequent Updates Over RDF Repositories
In some applications, RDF repositories are not static. For ex-

ample, Yago and DBpedia datasets are continually expanding to
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ABSTRACT
The production environment for analytical data management ap-
plications is rapidly changing. Many enterprises are shifting away
from deploying their analytical databases on high-end proprietary
machines, and moving towards cheaper, lower-end, commodity
hardware, typically arranged in a shared-nothing MPP architecture,
often in a virtualized environment inside public or private “clouds”.
At the same time, the amount of data that needs to be analyzed is
exploding, requiring hundreds to thousands of machines to work in
parallel to perform the analysis.

There tend to be two schools of thought regarding what tech-
nology to use for data analysis in such an environment. Propo-
nents of parallel databases argue that the strong emphasis on per-
formance and efficiency of parallel databases makes them well-
suited to perform such analysis. On the other hand, others argue
that MapReduce-based systems are better suited due to their supe-
rior scalability, fault tolerance, and flexibility to handle unstructured
data. In this paper, we explore the feasibility of building a hybrid
system that takes the best features from both technologies; the pro-
totype we built approaches parallel databases in performance and
efficiency, yet still yields the scalability, fault tolerance, and flexi-
bility of MapReduce-based systems.

1. INTRODUCTION
The analytical database market currently consists of $3.98 bil-

lion [25] of the $14.6 billion database software market [21] (27%)
and is growing at a rate of 10.3% annually [25]. As business “best-
practices” trend increasingly towards basing decisions off data and
hard facts rather than instinct and theory, the corporate thirst for
systems that can manage, process, and granularly analyze data is
becoming insatiable. Venture capitalists are very much aware of
this trend, and have funded no fewer than a dozen new companies in
recent years that build specialized analytical data management soft-
ware (e.g., Netezza, Vertica, DATAllegro, Greenplum, Aster Data,
Infobright, Kickfire, Dataupia, ParAccel, and Exasol), and continue
to fund them, even in pressing economic times [18].

At the same time, the amount of data that needs to be stored
and processed by analytical database systems is exploding. This is

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

partly due to the increased automation with which data can be pro-
duced (more business processes are becoming digitized), the prolif-
eration of sensors and data-producing devices, Web-scale interac-
tions with customers, and government compliance demands along
with strategic corporate initiatives requiring more historical data
to be kept online for analysis. It is no longer uncommon to hear
of companies claiming to load more than a terabyte of structured
data per day into their analytical database system and claiming data
warehouses of size more than a petabyte [19].

Given the exploding data problem, all but three of the above
mentioned analytical database start-ups deploy their DBMS on a
shared-nothing architecture (a collection of independent, possibly
virtual, machines, each with local disk and local main memory,
connected together on a high-speed network). This architecture
is widely believed to scale the best [17], especially if one takes
hardware cost into account. Furthermore, data analysis workloads
tend to consist of many large scan operations, multidimensional ag-
gregations, and star schema joins, all of which are fairly easy to
parallelize across nodes in a shared-nothing network. Analytical
DBMS vendor leader, Teradata, uses a shared-nothing architecture.
Oracle and Microsoft have recently announced shared-nothing an-
alytical DBMS products in their Exadata1 and Madison projects,
respectively. For the purposes of this paper, we will call analytical
DBMS systems that deploy on a shared-nothing architecture paral-
lel databases2.

Parallel databases have been proven to scale really well into the
tens of nodes (near linear scalability is not uncommon). However,
there are very few known parallel databases deployments consisting
of more than one hundred nodes, and to the best of our knowledge,
there exists no published deployment of a parallel database with
nodes numbering into the thousands. There are a variety of reasons
why parallel databases generally do not scale well into the hundreds
of nodes. First, failures become increasingly common as one adds
more nodes to a system, yet parallel databases tend to be designed
with the assumption that failures are a rare event. Second, parallel
databases generally assume a homogeneous array of machines, yet
it is nearly impossible to achieve pure homogeneity at scale. Third,
until recently, there have only been a handful of applications that re-
quired deployment on more than a few dozen nodes for reasonable
performance, so parallel databases have not been tested at larger
scales, and unforeseen engineering hurdles await.

As the data that needs to be analyzed continues to grow, the num-
ber of applications that require more than one hundred nodes is be-
ginning to multiply. Some argue that MapReduce-based systems

1To be precise, Exadata is only shared-nothing in the storage layer.
2This is slightly different than textbook definitions of parallel
databases which sometimes include shared-memory and shared-
disk architectures as well.
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ABSTRACT

Much work has been devoted to supporting RDF data. But
state-of-the-art systems and methods still cannot handle
web scale RDF data e↵ectively. Furthermore, many useful
and general purpose graph-based operations (e.g., random
walk, reachability, community discovery) on RDF data are
not supported, as most existing systems store and index data
in particular ways (e.g., as relational tables or as a bitmap
matrix) to maximize one particular operation on RDF data:
SPARQL query processing. In this paper, we introduce Trin-
ity.RDF, a distributed, memory-based graph engine for web
scale RDF data. Instead of managing the RDF data in triple
stores or as bitmap matrices, we store RDF data in its na-
tive graph form. It achieves much better (sometimes orders
of magnitude better) performance for SPARQL queries than
the state-of-the-art approaches. Furthermore, since the data
is stored in its native graph form, the system can support
other operations (e.g., random walks, reachability) on RDF
graphs as well. We conduct comprehensive experimental
studies on real life, web scale RDF data to demonstrate the
e↵ectiveness of our approach.

1 Introduction

RDF data is becoming increasingly more available: The se-
mantic web movement towards a web 3.0 world is prolif-
erating a huge amount of RDF data. Commercial search
engines including Google and Bing are pushing web sites
to use RDFa to explicitly express the semantics of their
web contents. Large public knowledge bases, such as DB-
pedia [9] and Probase [37] contain billions of facts in RDF
format. Web content management systems, which model
data in RDF, mushroom in various communities all around
the world.

Challenges RDF data management systems are facing two
challenges: namely, systems’ scalability and generality. The
challenge of scalability is particularly urgent. Tremendous
e↵orts have been devoted to building high performance RDF

⇤This work is done at Microsoft Research Asia.
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systems and SPARQL engines [6, 12, 3, 36, 14, 5, 35, 27].
Still, scalability remains the biggest hurdle. Essentially,
RDF data is highly connected graph data, and SPARQL
queries are like subgraph matching queries. But most ap-
proaches model RDF data as a set of triples, and use RDBMS
for storing, indexing, and query processing. These approaches
do not scale as processing a query often involves a large num-
ber of join operations that produce large intermediate re-
sults. Furthermore, many systems, including SW-Store [5],
Hexastore [35], and RDF-3x [27] are single-machine systems.
As the size of RDF data keeps soaring, it is not realis-
tic for single-machine approaches to provide good perfor-
mance. Recently, several distributed RDF systems, such
as SHARD [29], YARS2 [17], Virtuoso [15], and [20], have
been introduced. However, they still model RDF data as a
set of triples. The cost incurred by excessive join operations
is further exacerbated by network communication overhead.
Some distributed solutions try to overcome this limitation
by brute-force replication of data [20]. However, this ap-
proach simply fails in the face of complex SPARQL queries
(e.g., queries with a multi-hop chain), and has a considerable
space overhead (usually exponential).

The second challenge lies in the generality of RDF sys-
tems. State-of-the-art systems are not able to support gen-
eral purpose queries on RDF data. In fact, most of them are
optimized for SPARQL only, but a wide range of meaningful
queries and operations on RDF data cannot be expressed in
SPARQL. Consider an RDF dataset that represents an en-
tity/relationship graph. One basic query on such a graph is
reachability, that is, checking whether a path exists between
two given entities in the RDF data. Many other queries
(e.g., community detection) on entity/relationship data rely
on graph operations. For example, random walks on the
graph can be used to calculate the similarity between two
entities. All of the above queries and operations require
some form of graph-based analytics [34, 28, 22, 33]. Unfor-
tunately, none of these can be supported in current RDF
systems, and one of the reasons is that they manage RDF
data in some foreign forms (e.g., relational tables or bitmap
matrices) instead of its native graph form.

Overview of Our Approach We introduce Trinity.RDF,
a distributed in-memory RDF system that is capable of han-
dling web scale RDF data (billion or even trillion triples).
Unlike existing systems that use relational tables (triple
stores) or bitmap matrices to manage RDF, Trinity.RDF
builds on top of a memory cloud, and models RDF data
in its native graph form (i.e., representing entities as graph
nodes, and relationships as graph edges). We argue that
such a memory-based architecture that logically and physi-
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Abstract—With the increasing popularity of the Semantic Web,

more and more data becomes available in RDF with SPARQL

as a query language. Data sets, however, can become too big

to be managed and queried on a single server in a scalable

way. Existing distributed RDF stores approach this problem

using data partitioning, aiming at limiting the communication

between servers and exploiting parallelism. This paper proposes

a distributed SPARQL engine that combines a graph partitioning

technique with workload-aware replication of triples across

partitions, enabling efficient query execution even for complex

queries from the workload. Furthermore, it discusses query

optimization techniques for producing efficient execution plans

for ad-hoc queries not contained in the workload.

I. INTRODUCTION

The Resource Description Framework (RDF), together with
the query language SPARQL, has become the standard for
many Semantic Web applications and especially the Linked
Open Data Community. The number of RDF data sources is
continuously growing, and with it also the amount of data
provided by each source. DBpedia1, for instance, has now
reached a size of about 1.9 billion RDF triples, and according
to the W3C commercial data sets have already exceeded the
1 trillion triples barrier2. Facing this large amount of data that
keeps on growing, centralized single server solutions will not
much longer be able to efficiently answer queries and provide
results with reasonable performance.

To deal with this large amount of data, first clustered RDF
systems have been proposed [1]–[3]. Their key consideration
is to partition triples among machines based on hash values
of their subjects, predicates, and objects, or using range-
partitioned B+-trees. For query evaluation, these systems aim
at exploiting parallelism and minimizing communication be-
tween machines. Single triple patterns can usually be evaluated
efficiently in such systems since the constants in the triple
pattern identify only one of the partitions as relevant. However,
evaluating joins is often very expensive because partial results
from different machines must be matched. Thus, complex
queries might require multiple rounds of communication and
data exchange over the network.

For reducing this communication overhead, Huang et al. [4]
proposed to partition the RDF graph into compact subgraphs

1http://dbpedia.org/
2http://www.w3.org/wiki/LargeTripleStores

and assign each subgraph to a host. Using replication at
the borders of the partitions, queries that do not exceed a
certain diameter can be processed in parallel over all parti-
tions without further communication between hosts. All other
queries are evaluated using cross-partition joins implemented
as MapReduce [5] jobs, which is very expensive in terms of
execution time (with 20s startup overhead according to [4]).
The key to improve performance hence is to replicate more
triples at partition borders and process more queries locally,
but this comes at the price of highly increased storage cost.

The typical query workload of many applications, which
may result from regular form-based Web interfaces, consists
of queries with a very similar structure with smilar or even
the same predicates. Exploiting such a regular workload for
partitioning the RDF data can improve performance and re-
sponse time for future queries similar to the workload. To the
best of our knowledge, this is the first paper that considers a
workload to define partitions of RDF data sets. In particular,
building upon the techniques by Huang et al. [4], we present
WARP (Workload-Aware Replication and Partitioning) with
the following main contributions:

• advanced replication methods on top of graph-based
partitioning that take a workload into account and enable
efficient execution of all workload queries, and

• cost-aware query optimization and efficient query execu-
tion for arbitrary queries without the need for expensive
MapReduce jobs.

The remainder of this paper is structured as follows. We first
discuss related work in Section II and present the basic parti-
tioning approach in Section III. Section IV then introduces our
workload-aware replication technique, Section V introduces
efficient query processing approaches, Section VI presents
evaluation results, and Section VII concludes the paper.

II. RELATED WORK

With more and more RDF datasets becoming available,
there is an increasing number of techniques for efficient query
answering over multiple independent RDF sources. Ideally, all
sources provide SPARQL endpoints, enabling the application
of efficient distributed query processing techniques [6], [7].
Alternatively, for sources without SPARQL access, the data
can be downloaded either at query time or in advance into a
data warehouse. To handle queries over large amounts of RDF
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ABSTRACT
Massive volumes of big RDF data are growing beyond the
performance capacity of conventional RDF data manage-
ment systems operating on a single node. Applications
using large RDF data demand e�cient data partitioning
solutions for supporting RDF data access on a cluster of
compute nodes. In this paper we present a novel semantic
hash partitioning approach and implement a Semantic
HAsh Partitioning-Enabled distributed RDF data man-
agement system, called Shape. This paper makes three
original contributions. First, the semantic hash partitioning
approach we propose extends the simple hash partition-
ing method through direction-based triple groups and
direction-based triple replications. The latter enhances the
former by controlled data replication through intelligent
utilization of data access locality, such that queries over
big RDF graphs can be processed with zero or very small
amount of inter-machine communication cost. Second, we
generate locality-optimized query execution plans that are
more e�cient than popular multi-node RDF data manage-
ment systems by e↵ectively minimizing the inter-machine
communication cost for query processing. Third but not
the least, we provide a suite of locality-aware optimization
techniques to further reduce the partition size and cut
down on the inter-machine communication cost during dis-
tributed query processing. Experimental results show that
our system scales well and can process big RDF datasets
more e�ciently than existing approaches.

1. INTRODUCTION
The creation of RDF (Resource Description Frame-

work) [5] data is escalating at an unprecedented rate, led
by the semantic web community and Linked Open Data
initiatives [3]. On one hand, the continuous explosion of
RDF data opens door for new innovations in big data and
Semantic Web initiatives, and on the other hand, it easily
overwhelms the memory and computation resources on
commodity servers, and causes performance bottlenecks in
many existing RDF stores with query interfaces such as
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SPARQL [6]. Furthermore, many scientific and commercial
online services must answer queries over big RDF data
in near real time and achieving fast query response time
requires careful partitioning and distribution of big RDF
data across a cluster of servers.

A number of distributed RDF systems are using Hadoop
MapReduce as their query execution layer to coordinate
query processing across a cluster of server nodes. Several
independent studies have shown that a sharp di↵erence in
query performance is observed between queries that are
processed completely in parallel without any coordination
among server nodes and queries that require even a small
amount of coordination. When the size of intermediate
results is large, the inter-node communication cost for
transferring intermediate results of queries across multiple
server nodes can be prohibitively high. Therefore, we argue
that a scalable RDF data partitioning approach should be
able to partition big RDF data into performance-optimized
partitions such that the number of queries that hit partition
boundaries is minimized and the cost of multiple rounds of
data shipping across a cluster of sever nodes is eliminated
or reduced significantly.

In this paper we present a semantic hash partitioning ap-
proach that combines locality-optimized RDF graph parti-
tioning with cost-aware query partitioning for scaling queries
over big RDF graphs. At the data partitioning phase, we
develop a semantic hash partitioning method that utilizes
access locality to partition big RDF graphs across multiple
compute nodes by maximizing the intra-partition process-
ing capability and minimizing the inter-partition communi-
cation cost. Our semantic hash partitioning approach in-
troduces direction-based triple groups and direction-based
triple replications to enhance the baseline hash partitioning
algorithm by controlled data replication through intelligent
utilization of data access locality. We also provide a suite of
semantic optimization techniques to further reduce the par-
tition size and increase the opportunities for intra-partition
processing. As a result, queries over big RDF graphs can be
processed with zero or very small amount of inter-partition
communication cost. At the cost-aware query partitioning
phase, we generate locality-optimized query execution plans
that can e↵ectively minimize the inter-partition communi-
cation cost for distributed query processing and are more
e�cient than those produced by popular multi-node RDF
data management systems. To validate our semantic hash
partitioning architecture, we develop Shape, a Semantic
HAsh Partitioning-Enabled distributed RDF data manage-
ment system. We experimentally evaluate our system to un-
derstand the e↵ects of various system parameters and com-
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ABSTRACT
The increasing interest in Semantic Web technologies has led
not only to a rapid growth of semantic data on the Web but
also to an increasing number of backend applications with al-
ready more than a trillion triples in some cases. Confronted
with such huge amounts of data and the future growth, exist-
ing state-of-the-art systems for storing RDF and processing
SPARQL queries are no longer su�cient. In this paper, we
introduce Partout, a distributed engine for e�cient RDF
processing in a cluster of machines. We propose an e↵ec-
tive approach for fragmenting RDF data sets based on a
query log, allocating the fragments to nodes in a cluster,
and finding the optimal configuration. Partout can ef-
ficiently handle updates and its query optimizer produces
e�cient query execution plans for ad-hoc SPARQL queries.
Our experiments show the superiority of our approach to
state-of-the-art approaches for partitioning and distributed
SPARQL query processing.

1. INTRODUCTION
The increasing interest in Semantic Web technologies led

to a rapid growth of available semantic data on the Web.
Especially advances in information extraction [8, 19, 29, 33]
enabled e�cient and accurate extraction of knowledge from
natural language text and its representation in a machine-
readable format – RDF (Resource Description Framework).
DBpedia1, for instance, has now reached a size of 3.6 mil-
lion entities and 1 billion RDF triples extracted from Wiki-
pedia. As the number of Wikipedia articles increases every
day and as information extraction techniques are still being
improved, DBpedia and similar knowledge bases are likely to
keep on growing. Some commercial data sets are even big-
ger by several orders of magnitude; according to the W3C,
commercial data sets have already exceeded the 1 trillion
triples barrier2.

1
http://dbpedia.org/

2
http://www.w3.org/wiki/LargeTripleStores

It is not only the amount of data provided by a source
that is growing but also the number of sources as the steady
growth of the Linked Open Data (LOD) cloud3 [2] has
shown. LOD sources interlink their data by explicitly refer-
encing data (URIs) provided by other sources and therefore
building the foundations for answering queries over the data
of multiple sources. Furthermore, more and more small RDF
data sets without query processing interfaces become avail-
able on the Web. The data of such sources can usually be
downloaded and processed locally. In the past few years,
such data was crawled for the Billion Triple Challenge and
resulted in about 1.5 billion triples in 20124.
Query processing in these scenarios is challenging because

of the di↵erent ways in which sources can be accessed. Some
sources provide SPARQL endpoints, others are available as
downloadable data dumps, and still others as dereference-
able URIs5. This led to a variety of approaches for query
processing that ranges from downloading the data during
query processing [11,13,16] to the application of techniques
known from distributed database systems [17, 26, 31] as a
number of SPARQL endpoints, for instance, resembles a
mediator-based or federated database system. The main
disadvantage of these systems is the lack of control over the
data, i.e., there is no guarantee on response time or that the
data is available during query evaluation or that a source
is answering a subquery at all. Furthermore, statistics that
are essential for query optimization are hard to obtain and
network communication delays are unpredictable.
An alternative approach to answer queries over multiple

RDF sources corresponds to data warehousing, where the
data is downloaded from the Web, collected in a huge triple
store, and updated from time to time. Query processing
in such a setup strongly benefits from e�cient centralized
query optimization and execution. Still, the ever-growing
amount of RDF data will sooner or later result in scalability
problems for a single machine. There are two widely used ap-
proaches to solve this problem: buying bigger machines (ex-
pensive mainframes) that can hold and process most of the
data in main memory (centralized processing), or distributed
query processing in a cluster of machines. As the first solu-
tion will sooner or later reach its limits in terms of available
funding or scalability, applying a scale-out architecture and
data partitioning with several cooperating machines based
on commodity hardware is a good alternative, which has not

3
http://linkeddata.org/

4
http://challenge.semanticweb.org/

5An HTTP lookup of a URI provides a set of RDF triples
with facts about the entity identified by the URI.
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Scale RDF systems by using:

Graph partitioning of data

Vertex neighborhood replication
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Scale RDF systems by 
scaling graph systems
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Purpose and overhead of Hadoop

Can we use general graph systems 
not RDF?

Space and maintenance cost of broad 
replication strategy


