Scaling RDF
Systems

Jiewen Huang, et. al. Michael Abebe AN WATERLOO
VLDB 201" CS 848 (Mar2019) &

Gooqgle | University of Waterloo |

Notable Alumni

People also search for:
Western

UNIVERSITY - CANADA

IIIIIIIIIIII

2 WATERLOO

Afﬁliatey| QC &z

IIIIIIIIIIII

Founder WATERLOO Offices of

of /

Alumni of

Donor of

Google’s Knowledge
Graph tripled in size

Casey Newton In seven months
Dec 2012

At launch, a database of the
relationships among 500 million
objects and 3.5 billion facts.

Knowledge Graph

£54 Aff/l/atey| QC&xs
— /‘

||||||||||||

FOunder WATERLOO Oﬁ:lces Of
of /
Alumni of

Donor of

RDF
Bz oo/ Qc =

||||||||||||

Founder WATERLOO Offices of

Of/

Alumni of

‘ L Donor of

How to scale RDF systems?

IIIIIIIIIIII

Object Vertex

Predicate Labelled
Edge

Subject Vertex

IIIIIIIIIIII

2 WATERLOO
8

How to scale RDF systems?

Scale graph systems

IIIIIIIIIIII

DNLC

1 N\ I i

Scaling
Graph Systems

IIIIIIIIIIII

Jiewen Huang, et. al. Michael Abebe A WATERLOO
VLDB 201" CS 848 (Mar2019) &

How to scale graph systems?

An Experimental Comparison of Partitioning Strategies in
Distributed Graph Processing

Shiv Verma', Luke M. Leslie', Yosub Shin”", Indranil Gupta’
! University of lllinois at Urbana-Champaign, Urbana, IL, USA
2 Samsara Inc., San Francisco, CA, USA

{svermaii, Imlesli2}@illinois.edu, yosub@samsara.com, indy@illinois.edu
Table 1: Systems and their Partitioning Strategies.

ABSTRACT ‘ System ‘ Partitioning Strategies ‘
In this paper, we StUdy the problem of ChOOSing among par- PowerGraph (§5) | Random, Grid, Oblivious, HDRF, PDS

titioning strategies in distributed graph processing systems. PowerLyra (§6) | Random, Grid, Oblivious, Hybrid, Hybrid-Ginger, PDS
To this end, we evaluate and characterize both the perfor- GraphX (§7) [Random, Canonical Random, 1D, 2D

mance and resource usage of different partitioning strate-
gies under various popular distributed graph processing sys-

Select a good graph partitioning

&) WATERLOO

Partitioning Graphs

Institute for

I ‘ Quantum
/ computing

UNIVERSITY OF

WATERLOO

IIIIIIIIIIII

2 WATERLOO

12

Partitioning Graphs

Institute for

I ‘ Quantum
/ computing

UNIVERSITY OF

WATERLOO

\

IIIIIIIIIIII

2 WATERLOO

13

Placing Triples
= _AQes=

UNIVERSITY OF

WATERLOO

IIIIIIIIIIII

%;@ WATERLOO

14

Placing Triples

IIIIIIIIIIII

WATERLOO

_>

IIIIIIIIIIII

Placing Triples

Institute for

" I ‘ Quantum
Computing
—

UNIVERSITY OF

WATERLOO

IIIIIIIIIIII

2 WATERLOO

16

Placing Triples

-

UNIVERSITY OF

WATERLOO

UUUUUUUUUUUU

%;@ WATERLOO
1

7

Placing Triples

IIIIIIIIIIII

_ WATERLOO
® I C Institute for W
ﬁ Quantum ﬁ
Q Computing @

P _ —M
e
WATERLOO
— %}@

-

2 WATERLOO

18

Placing Triples
= _AQes=

UNIVERSITY OF

WATERLOO

IIIIIIIIIIII

%’%\9 WATERLOO
19

Placing Triples

=~ | F—¥5
l?l 4

UNIVERSITY OF

WATERLOO

_>

-
#

i -

Institute for
Quantum
Computing

UNIVERSITY OF

WATERLOO

_y

Institute for
Quantum
Computing

UNIVERSITY OF

2 WATERLOO

20

Placing Triples

Partition RDF graph (Metis)

Place triples at subjects partitions

IIIIIIIIIIII

Placing Triples

IIIIIIIIIIII

_ WATERLOO
I C Institute for W
t
Q iy S

WATERLOO

_>

Q: Find buildings
donated by .§.

IIIIIIIIIIII

2 WATERLOO

22

Placing Triples

7 :

‘g

l

j.—>

—s‘ !
WATERLOO
— %

1QC

IIIIIIIIIIII

. WATERLOO
Institute for W
t
ity —

Q: Find offices in &

tttttttttt
Quantum
Computing

IIIIIIIIIIII

2 WATERLOO

23

Placing Triples

{ﬁ/"

WATERLOO

_>

IIIIIIIIIIII

ﬁ

Q: Find offices in

buildings donated by g '

24

Distributed queries are expensive

IIIIIIIIIIII

Replicating Triples

UNIVERSITY OF

WATERLOO

_>

UNIVERSITY OF

WATERLOO

_y

Institute for
Quantum
Computing

Institute for
Quantum
Computing

2 WATERLOO

26

Replicating Triples

UNIVERSITY OF

WATERLOO

I C Institute for W
Quantum ﬁ
Computing

Institute for
Quantum
Computing

UNIVERSITY OF

WATERLOO

Institute for

Quantum
Computing

2 WATERLOO

27

Distributed queries are expensive

Replicate (undirected) n-hop
neighborhood

IIIIIIIIIIII

N-Hop Neighborhood

IIIIIIIIIIII

Executing Queries

||||||||||||

| — » ¢ I C Institute for WATERLOO
5 » t
Bz e

WATERLOO

— 9

>
/

o

Execute with existing RDF engine

nnnnnnnnnnnn

2 WATERLOO

30

RDF query execution is
subgraph matching

gStore: Answering SPARQL Queries via Subgraph
Matching

Lei Zou', Jinghui Mo, Lei Chen?, M. Tamer Ozsu?, Dongyan Zhao'*

Peking University, China;
2 Hong Kong University of Science and Technology, China;
3 University of Waterloo, Canada;
* Key Laboratory of Computational Linguistics (PKU), Ministry of Education, China
{ zoulei,mojinghui, zdy}@icst.pku.edu.cn, leichen@Rcse.ust.hk, tamer.ozsulRuwaterloo.ca

ABSTRACT example is given in Figure 1(a). Note that, an RDF dataset can
also be modeled as a graph (called RDF graph), as shown in Figure
1(b). In order to query RDF repositories, SPARQL query language
[16] has been proposed by W3C. For example, we can retrieve the

Due to the increasing use of RDF data, efficient processing of SPA-
RQL queries over RDF datasets has become an important issue.
However, existing solutions suffer from two limitations: 1) they ek)
cannot answer SPARQL queries with wildcards in a scalable man- names gf individuals who were born on February 12, 1.809 and died
ner; and 2) they cannot handle frequent updates in RDF repositories on April 15, 1865 from the RDF dataset by the following SPARQL
efficiently. Thus, most of them have to reprocess the dataset from query:

Sepatel o thic poner e pronace o cranb boced oonroach o o Q1: Select 2name Where { Tm <hasName> ‘mame. ?m <BornOn Date >

2 WATERLOO

31

Afﬁliatey| QC&xr

IIIIIIII

WATERLOO Offices of

32

-

iInd offices In

IIIIIIIIIIII

Executing Queries

UNIVERSITY OF

_ WATERLOO
I C Institute for W
t
QCa —»

Institute for
Quantum
Computing

UNIVERSITY OF

- WATERLOO
3

2 WATERLOO

34

Distributed RDF query execution is
distributed subgraph matching

Use Hadoop

IIIIIIIIIIII

Executing Hadoop Queries

Decompose queries into single node queries

Return non-replicated triples from sites
Join results with Hadoop jobs

Hadoop usually has at least 20s overhead

IIIIIIIIIIII

Why use Hadoop?

HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads

Azza Abouzeid!, Kamil Bajda-Pawlikowski*,
Daniel Abadi', Avi Silberschatz', Alexander Rasin?
'Yale University, 2Brown University

{azza,kbajda,dna,aviy@cs.yale.edu; alexr@cs.brown.edu

ABSTRACT

The production environment for analytical data management ap-
plications is rapidly changing. Many enterprises are shifting away
from deploying their analytical databases on high-end proprietary
machines, and moving towards cheaper, lower-end, commodity
hardware, typically arranged in a shared-nothing MPP architecture,
often in a virtualized environment inside public or private “clouds”.
At the same time, the amount of data that needs to be analyzed is
exploding, requiring hundreds to thousands of machines to work in

partly due to the increased automation with which data can be pro-
duced (more business processes are becoming digitized), the prolif-
eration of sensors and data-producing devices, Web-scale interac-
tions with customers, and government compliance demands along
with strategic corporate initiatives requiring more historical data
to be kept online for analysis. It is no longer uncommon to hear
of companies claiming to load more than a terabyte of structured
data per day into their analytical database system and claiming data
warehouses of size more than a petabyte [19].

Given the exploding data problem, all but three of the above

Rarallelio nﬁﬁgim ;hﬁ analvciq

% WATERLOO

Distributed RDF query execution is
distributed subgraph matching

Kai Zengf* Jiacheng Yangﬁ*
TUCLA *Columbia University
kzeng@cs.ucla.edu
ABSTRACT

Much work has been devoted to supporting RDF data. But
state-of-the-art systems and methods still cannot handle
web scale RDF data effectively. Furthermore, many useful
and general purpose graph-based operations (e.g., random
walk, reachability, community discovery) on RDF data are
not supported, as most existing systems store and index data
in particular ways (e.g., as relational tables or as a bitmap
matrix) to maximize one particular operation on RDF data:

SE‘i B‘i PP ST atiraN NI LAV LR A TR T APt na{nfwvln o Th

A Distributed Graph Engine for Web Scale RDF Data

Haixun Wang:
tMicrosoft Research Asia

jiachengy@cs.columbia.edu
{haixunw, binshao, zhy.wangi@microsoft.com

Bin Shao* Zhongyuan Wang*’

*Renmin University of China

systems and SPARQL engines [6, 12, 3, 36, 14, 5, 35, 27].
Still, scalability remains the biggest hurdle. Essentially,
RDF data is highly connected graph data, and SPARQL
queries are like subgraph matching queries. But most ap-
proaches model RDF data as a set of triples, and use RDBMS
for storing, indexing, and query processing. These approaches
do not scale as processing a query often involves a large num-
ber of join operations that produce large intermediate re-
sults. Furthermore, many systems, including SW-Store [5],
Hexastore [35], and RDF-3x [27] are single-machine systems.

Beats Hadoop

UNIVERSITY OF

2 WATERLOO

38

Optimizations

E’— g ® 1N uantum
g Z-3 Aff/l/atey| QC Compoin

||||||||||||

Founder WATERLOO Offices of

of /

Alumni of

1 Donor of

Optimizations

Optimizations

Remove high degree vertices
from graph partitioning

IIIIIIIIIIII

Evaluation

Compare:
1 & 2 hop graph partitioning

Hash partitioning

Single node

Shard (Hadoop based)

IIIIIIIIIIII

Evaluation

1 & 2 hop graph partitioning:
Slows down fast queries

Speeds up slow queries (9x)

Takes longer to load (2-8x)

Increases space used (4x)

IIIIIIIIIIII

Workload Aware RDF

Schism like partitioning & replication

WARP: Workload-Aware Replication and
Partitioning for RDF

Scaling Queries over Big RDF Graphs
with Semantic Hash Partitioning

Partout: A Distributed Engine for Efficient RDF Processing

Luis Galarraga Katja Hose Ralf Schenkel
Max-Planck Institute for Department of Computer Max-Planck Institute for
Informatics Science Informatics
Saarbriicken, Germany Aalborg University, Denmark Saarbricken, Germany
lgallara@mpi-inf.mpg.de khose@cs.aau.dk schenkel@mpi-inf.mpg.de
ABSTRACT It is not only the amount of data provided by a source

that is growing but also the number of sources as the steady
growth of the Linked Open Data (LOD) cloud® [2] has
shown. LOD sources interlink their data by explicitly refer-
encing data (URIs) provided by other sources and therefore

with such huge amounts of data and the future growth, exist- building the foundations for answering queries over the data

The increasing interest in Semantic Web technologies has led
not only to a rapid growth of semantic data on the Web but
also to an increasing number of backend applications with al-
ready more than a trillion triples in some cases. Confronted

ing state-of-the-art systems for storing RDF and processing of multiple sources. Furthermore, more and more small RDF

P data sets without query processine jnterfaces become avail

>

UNIVERSITY OF

WATERLOO

Summary
Scale RDF systems by using:
Graph partitioning of data

Vertex neighborhood replication

2 WATERLOO
45

Scale RDF systems by
scaling graph systems

IIIIIIIIIIII

Discussion

Purpose and overhead of Hadoop

Space and maintenance cost of broad
replication strategy

Can we use general graph systems
not RDF? B WaTERLG)

